Back in the spring, my good friend and co-worker Neal Raker wrote a great piece, titled “Can I Use A Vortex Tube For Heating?” which I will try my best not to borrow too much from or outright plagiarize in the blog to follow. I only mention it because I had the pleasure of helping a customer with one of the “usually few and far between” Vortex Tube heating applications recently.
Like Neal said, the conditions under which Vortex Tubes fit a heating application are fairly narrow, but certainly not unheard of. In this situation, a reciprocating air motor had been in place on a piece of factory machinery for years. A recent change in the part being manufactured meant that the motor had to be slowed down, which meant throttling down on the vent valve on the motor’s pneumatic exhaust. When they did this, the valve became prone to freezing up, meaning someone had to rig up a heat gun and climb up on top of the machine to the vent valve, directing hot air on the valve until it thawed. It got to be a real hindrance to the process when this happened several times a day.
The caller was familiar with our Vortex Tube products, having used Mini Coolers and Cold Guns in other parts of the plant. He knew that there was hot air coming out of the other end, and thought it could be used to thaw the vent valve, but was concerned, because it was such a low flow.
He was right: the hot air exhaust of both the Mini Cooler and Cold Gun is a small fraction of the total air supply…that’s by design. Also, it’s passed through a noise reducing muffler which further spreads it out to make it nice & quiet…also by design.
That’s when a fuller explanation of Vortex Tube operation came into play: See, the Mini Coolers and Cold Guns are all set to a high Cold Fraction (the percentage of supply air that is directed to the cold end,) so, although the hot exhaust is indeed fairly hot, there’s just not a lot of it. By contrast, our 3400 Series Maximum Cold Temperature Vortex Tubes are adjustable for lower Cold Fractions (from 20-50%,) meaning that the hot exhaust flow can range from 50-80% of the supply air flow. Additionally, the hot end of the Vortex Tube has male NPT threads, for convenient porting & direction of the hot air flow.
Now, back to the conditions that made this a good fit for the Vortex Tube: the machinery already had an ample and easily accessible supply of compressed air…they were able to tap a line from the air motor’s supply. The closest outlet for their heat gun was on the other side of the walkway, which meant they had to stretch an extension cord across the walkway, creating a trip hazard. The vent valve is also small enough that they could use a Model 3402 Vortex Tube, which utilizes only 2 SCFM @100psig…a tiny fraction of what the air motor uses.
With the Vortex Tube mounted permanently in place, the vent valve now operates flawlessly, without the need for manually thawing with the incredibly inconvenient heat gun.
If you think you might have a decent fit for a Vortex Tube heating application, give us a call. You may be right.
Russ Bowman
Application Engineer
(513)671-3322 local
(800)923-9247 toll free
(513)671-3363 fax
Find us on the Web
Follow me on Twitter
Like us on Facebook
Filed under: Cold Gun, Compressed Air, Compressed Air Optimization, Customer Service, Vortex Tubes Tagged: air chiller, air heating, air motor, cold air gun, cold air tubes, Cold Gun, compressed air, compressed air cooling, compressed air efficiency, compressed air heating, compressed air product applications, compressed air products, coolant system, Cooling, cooling nozzle, cooling tubes, customer service, cutter grinding, cutting fluid, drill grinding, exair, exair cold gun, exair vortex coolers, FAQ, Frequently Asked Questions, heating, manufacturing, Mini Cooler, mist coolant, ndraker, RRBowman, tool cooling, tool sharpening, vent valve, vortex air cooler, Vortex Cooler, vortex cooling, vortex cooling system, vortex tube cooling, vortex tube heat, vortex tube heating
